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On the Convergence of the Boltzmann Equation for
Semiconductors Toward the Energy Transport Model
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The diffusion limit of the Boltzmann equation of semiconductors is analyzed.
The dominant collisions are the elastic collisions on one hand and the electron�
electron collisions with the Pauli exclusion terms on the other hand. Under a
nondegeneracy hypothesis on the distribution function, a lower bound of the
entropy dissipation rate of the leading term of the Boltzmann kernel for semi-
conductors in terms of a distance to the space of Fermi�Dirac functions is
proved. This estimate and a mean compactness lemma are used to prove the
convergence of the solution of the Boltzmann equation to a solution of the
energy transport model.

KEY WORDS: Boltzmann equation; semiconductor; diffusion; energy trans-
port model; entropy dissipation rate.

1. INTRODUCTION

This paper is devoted to the proof of the convergence of the solution of the
Boltzmann equation, for a degenerate semiconductor and with an arbitrary
band structure, towards the solution of the Energy Transport model
derived in ref. 4.
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The Energy Transport model (ET model) consists of a system of diffu-
sion equations for the electronic density and energy. It improves the drift-
diffusion model (DD model) in order to take into account the dependence
of the mobility on the temperature and the thermal diffusion. It was first
derived by Stratton(26) from the Boltzmann equation, by using phenome-
nologic closure relations Stratton's model is valid for a non-degenerate
semiconductor (i.e., for which Pauli exclusion principle can be neglected)
with a parabolic band structure. It has been widely used in numerical simu-
lations, (1, 8, 13, 23, 25) but not much investigated from a mathematical point of
view.

In ref. 4 an ET model is derived from the Boltzmann equation, by a
Hilbert expansion, for a degenerate semiconductor with an arbitrary band
structure. To this aim, the energy gain or loss of the electrons by the
phonon collisions is assumed to be small, which yields that the phonon
collision operator is the sum of an elastic operator and a small inelastic
collision. Then, a diffusion limit of the Boltzmann equation is carried over,
retaining as leading order terms the electron-'electron and elastic collisions.

In the present paper is proved the convergence of the solutions of the
Boltzmann equation, to those of the ET model, in the framework of ref. 4.

Let us mention that in ref. 3 is performed the derivation of the ET
model under a different assumption on the dominant collisions, which leads
to the same model with different expressions of the diffusion coefficients.

The approach used here has been developed by Golse and Poupaud(21)

for the DD model and is based on an entropy estimate and a mean com-
pactness lemma. The mean compactness lemma used in the present study
is proved in ref. 21 and is an adaptation of the result of Golse, Lions,
Perthame and Sentis.(20) Here it is also necessary to study the link between
the conservative and entropic variables, which was immediate in ref. 21.

The entropy estimate stated in the present paper is similar to the one
established by Desvillettes in ref. 15. However, in the framework of ref. 15
(the theory of rarefied gazes) the energy is a parabolic function of the
kinetic variable, which is not true in the present study. Due to this non
parabolic structure, the proof presented here is different.

Similarly as in the work of ref. 15, the entropy estimate presented here
is stated in L2 and relies on the assumption that the solution of the scaled
Boltzmann equation is bounded from below and above, uniformly with
respect to the time, position, kinetic variable and to the small parameter of
the asymptotic development, see Theorem 1 and Remark 2.2. This assump-
tion is very strong. Indeed, it seems possible to establish it for a fixed value
of the small parameter, in a time interval near zero, but the measure of this
interval might tend to zero as the small parameter tends to zero. This
assumption is also used, in this paper, in the study of the link between the
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conservative and entropic variables. It is also very close to the assumption
of non-degeneracy of the diffusion matrix in the ET model, used in refs. 11
and 12 to prove the existence of solutions of the latter. One way to avoid
it could be to look for an estimate in a weighted L2 space.

This paper is organized as follows. In Section 2 are given the setting
of the problem, the assumptions and the result. In Section 3 is stated the
entropy estimate and Section 4 is devoted to the mean compactness lemma
and to the link between the conservative and entropic variables. The proof
of the convergence is finished is Section 5.

2. SETTING OF THE PROBLEM AND MAIN RESULT

In this paper is considered the same framework as in ref. 4. The start-
ing point is the Boltzmann equation for a degenerate semiconductor (i.e.,
Pauli exclusion principle is taken into account) with an arbitrary band
structure. Electron�electron collisions as well as impurity and phonon colli-
sions are incorporated:

�f
�t

+
1
�

{k =(k) } {x f +
q
�

{xV } {k f =Qe( f )+Qi ( f )+Qph( f ) (2.1)

In this picture, the electrons are described by their distribution function
f (t, x, k), where t is the time variable, x is the position variable lying in
a bounded domain 0 of R3 and k is the wave vector lying in the first
Brillouin zone B. (The first Brillouin zone is the elementary cell of the dual
lattice L* and is identified to the torus R3�L*). The dynamics of electrons
is described by the equations

dx
dt

=v(k)=
1
�

{k=(k),
d�k
dt

=q {xV

where =(k) is the energy band, V is the electrostatic potential, � is the
reduced Planck constant and q the elementary charge. The electrostatic
potential is in general deduced from the distribution function through the
Coulomb interaction, but for the sake of simplicity, we shall assume here
that it is given and does not depend on time.

The electron�electron collision operator reads

Qe( f )(k)=|
B 3

[ f $f $1(1& f )(1& f1)& f f1(1& f $)(1& f $1)]

_$= $p8e(k, k$, k1 , k$1) dk1 dk$ dk$1 (2.2)
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where $= stands for $(=(k)+=(k1)&=(k$)&=(k$1)) and models the con-
servation of the kinetic energy during a collision, $p stands for
�g # L* $(k+k1&k$&k$1+ g), and models a periodized conservation of the
impulsion: k, k1 , k$ and k$1 lie in the Brillouin zone and k+k1&k$&k$1= g
where g # L*. Equation (2.2) has a meaning using the coarea formula, (18)

see Eq. (2.16). Finally, in formula (2.2), 8e is the cross section, f, f1 , f $, f $1
stand respectively for f (k), f (k1), f (k$), f (k$1), The terms (1& f ), (1& f1),...
express the Pauli exclusion principle and lead to the natural bound
0� f�1.

Electron-impurity collisions are elastic and are modelled by

Qi ( f )(k)=|
B

( f $& f ) $(=(k$)&=(k)) 8i (k, k$) dk$ (2.3)

where 8i is a cross section.
The electron�phonon collision operator reads

Qph( f )(k)=|
B

8ph(k, k$)

_[[(Nph+1) $(=&=$+=ph)+Nph $(=&=$&=ph)] f $(1& f )

&[(Nph+1) $(=$&=+=ph)+Nph $(=$&=&=ph)] f (1& f $)] dk$

(2.4)

where =ph and Nph are respectively the phonon energy and occupation
number, and 8ph is a cross section.

In ref. 4 is derived an ET model from Eq. (2.1) under an assumption
on the collision operators and after a rescaling of the equation. It is
assumed that the typical energy of a phonon, =ph, 0 , is small compared with
the typical kinetic energy of an electron, =0 . The latter is used as energy
unit to rescale Eq. (2.1). A small parameter : is introduced: :2==ph, 0 �=0 .
Expanding formally the scaled Qph in powers of :2 yields

Qph( f )=Qph, 0( f )+:2Q:
1

where Qph, 0( f ) is an elastic operator and Q:
1 an inelastic correction. It is

assumed that Qph, 0 , Qi and Qe have the same order of magnitude and an
operator Q0 is introduced modelling all elastic collisions:

Q0( f )=Qph, 0( f )+Q i ( f )=|
B

( f $& f ) $(=(k$)&=(k)) 80(k, k$) dk$
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where 80 is the corresponding cross-section. In ref. 4, the leading order
operators are Qe and Q0 .

The inelastic electron�phonon operator, Q:
1 , will not be investigated in

this paper. It will give the energy relaxation term in the ET model, see
Eq. (2.31). For the sake of simplicity, we require in this study a uniform
bound of the operator, Assumption 4. This operator with arbitrary band
structure and the Pauli principle has not been investigated up to now. We
refer to ref. 24 for a study of this operator for a parabolic band diagram
and without the Pauli principle.

In ref. 4, a diffusion limit of the Boltzmann equation is performed: the
macroscopic time and length scale are related to the kinetic ones according
to tm=:2tk and xm=:xk , (tm , xm) being the macroscopic scale, (tk , xk) the
kinetic one. Then, the rescaled Boltzmann equation reads

�f :

�t
+

1
:

({k =(k) } {x+{xV } {k) f :=
1
:2 (Qe( f :)+Q0( f :))+Q:

1( f :) (2.5)

This equation is supplemented with the initial condition

\x # 0, k # B, f :(0, x, k)= f :
in(x, k) (2.6)

and the boundary conditions are described by a scattering operator relating
the incoming and outgoing part of f, as in ref. 14: \t # R+ , x # �0, k # B&(x),

f :(t, x, k)=|
B+(x)

R(k$ � k) $(=(k)&=(k$)) f :(t, x, k$) dk$ (2.7)

where B\(x)=[k # B, \{k=(k) } &(x)>0], &(x) is the outward unit nor-
mal at x # �0, and R(k$ � k) is a given cross section. The delta function in
Eq. (2.7) expresses that the underlying microscopic dynamics is elastic.
Therefore, reflections occur with conservation of the total (kinetic) energy
and mass.

2.1. Assumptions

We shall in this subsection precise the assumptions that will be needed
in the sequel.

Assumption 1. The energy band

v The function =: B � R+ belongs to C2(B� ), has at most a finite num-
ber of critical points and even (with respect to k). Denoting k=(k1, k2, k3)
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we assume that the functions 1, �=��k1, �=��k2, �=��k3 are linearly indepen-
dent. Moreover, we assume that = satisfies:

_C, !>0, \| # S3, #>0, }{k # B, }\{k=(k)
1 + } | }�#=}�C#! (2.8)

where | | denotes (and will denote from now on) the Lebesgue measure
on B.

v Let us define for (k, k1 , g) # B_B_L* the function

=~ (k, k1 , g)(k$)==(k$)+=(k+k1+ g&k$)&=(k)&=(k1) (2.9)

Its domain of definition is the set

Bk, k1 , g=[k$ # B, k+k1+ g&k$ # B] (2.10)

We assume that for any (k, k1 , g) # B_B_L*, the function =~ (k, k1 , g) has
at most a finite number of critical points.

Assumption 1 expresses the non degeneracy of the band diagram. It
has a real three dimensional structure. This is the case for band diagrams
of real materials.

Assumption 2. Cross sections, microreversibility

We assume that 8e and 80 satisfy the following identities

\(k, k$, k1 , k$1) # B4, 8e(k, k$, k1 , k$1)=8e(k$, k, k$1 , k1)

=8e(k1 , k$1 , k, k$), (2.11)

80(k, k$)=80(k$, k)

With these assumptions, formulas (2.2) and (2.3) can be understood
thanks to the Co-area formula (see ref. 18). Indeed, for e # =(B), the
manifold =&1(e)=[k # B, =(k)=e] has at most a finite number of singu-
larities thanks to Assumption 1. Denote by dSe(k) its Euclidean surface
element and by N(e) the density of states of energy e:

N(e)=|
k # =&1(e)

dNe(k), dNe(k)=
dSe(k)
|{=(k)|

(2.12)
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The elastic collision operator Q0 reads

Q0( f )(k)=|
k$ # =&1(=(k))

80(k, k$)( f $& f ) dN=(k)(k$) (2.13)

In the same way, we consider for all (k, k1 , g) # B_B_L* the manifold

=~ &1(k, k1 , g)(0)=[k$ # B, k+k1+ g&k$ # B, =~ (k, k1 , g)(k$)=0] (2.14)

where =~ is defined in (2.9). This manifold has also at most a finite number
of singularities thanks to Assumption 1. We denote by dS� (k, k1 , g)(k$)
its Euclidian surface element and by N� (k, k1 , g) the following density of
states:

N� (k, k1 , g)=|
k$ # =~ &1(k, k1 , g)(0)

dN� k, k1 , g(k$),

(2.15)

dN� k, k1 , g(k$)=
dS� (k, k1 , g)(k$)

|{k$=~ (k, k1 , g)(k$)|

Let

Pk, k1
=[g # L*, =~ &1(k, k1 , g)(0){<]

which is finite since B is bounded. Then, Qe can be written thanks to the
Co-area formula under the form

Qe( f )(k)=|
k1 # B

:
g # Pk, k1

dk1 |
k$ # =~ &1(k, k1 , g)(0)

dN� k, k1 , g(k$)

_8e(k, k$, k1 , k+k1+ g&k$)( f $f (k+k1+ g&k$)(1& f )

_(1& f1)& f f1(1& f $)(1& f (k+k1+ g&k$))) (2.16)

We shall also use the notation

N� (k, k1)= :
g # Pk, k1

N� (k, k1 , g) (2.17)

Assumption 3. Amplitude of cross sections

v There exist two constants c0 , C0>0 such that for a.e. k, k$ # B2

verifying =(k)==(k$),

c0�80(k, k$) N(=(k))�C0 (2.18)
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v There exist two constants ce , Ce>0 such that when k, k1 # B2, and
k$ # �g # Pk, k1

=~ &1(k, k1 , g)(0),

ce�8e(k, k$, k1 , k+k1&k$) N� (k, k1 , 0) (2.19)

N� (k, k1) { :
g # Pk, k1

8e(k, k$, k1 , k+k1+ g&k$)=�Ce (2.20)

Assumption 4. Inelastic operators

We shall not give an explicit form for the inelastic operator Q:
1 . We

assume however that Q:
1( f )=Q0

1( f )+:Q:
1, 1( f ) and both Q0

1 and Q:
1, 1

are bounded operators of L2(B) (uniformly in : for the second one) such
that for any centered Fermi�Dirac function F(k)=exp(a+c=(k))�(1+
exp(a+c=(k))) (where a and c are real numbers),

|
B

Q0
1(F ) dk=0 (2.21)

Assumption 5. Natural bounds for the initial condition

The function f :
in lies in L�(0_B) and satisfies for a.e. (x, v) # 0_B:

0� f :
in(x, v)�1 (2.22)

Assumption 5 is natural for densities constrained to verify Pauli's
exclusion principle, which is the case in a degenerate semiconductor.

Assumption 6. Regularity of the electric field

The function V belongs to C2(0� ).

Assumption 7. Reflection operator on the boundary

The open set 0 of R3 is regular (C2) and connected. The cross section
R(k$ � k) is a nonnegative measure satisfying the following identities.

For all (x, k) # �0_B such that k # B+(x),

|{k =(k) } &(x)|=|
B&(x)

|{k=(k$) } &(x)| R(k � k$) $(=(k)&=(k$)) dk$ (2.23)

and for all (x, k, k$) # �0_B_B such that k # B+(x) and k$ # B&(x),

|{k =(k$) } &(x)| R(k � k$)=|{k =(&k) } &(x)| R(&k$ � &k) (2.24)
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Equation (2.23) means that the boundary restitutes all the impinging
electrons without altering their energy. Indeed a simple computation
proves that (2.23) leads to

|
B&(x)

G(=(k)) |{k =(k) } &(x)| f (t, x, k) dk

=|
B+(x)

G(=(k)) |{k=(k) } &(x)| f (t, x, k) dk (2.25)

for all f satisfying (2.7) and all functions G. Equation (2.24) is a reciprocity
relation resulting from the time reversibility of the microscopic dynamics,
see refs. 14 or 6 and references therein.

We refer to ref. 4 for a detailed physical interpretation of this
framework, as well as for a discussion of the relevant bibliography.

2.2. The Result

Let us first introduce the following definition.

Definition 1. We say that f : is a weak solution of (2.5)�(2.7)
under Assumptions 1 to 7 if f : # C0([0, T ], L2(0_B)), f : admits a trace
f :

\ on the set [(t, x, k) # [0, T ]_�0_B, k # B\(x)], and for all test func-
tion % # D([0, T[_0� _B� ), the following weak formulation is verified,

|
0_B

f :
in(x, k) %(0, x, k) dx dk

&|
T

0
|

0_B
f : _�%

�t
+

1
:

({k =(k) } {x %+{xV } {k%)& dx dk dt

=|
T

0
|

0_B
%(t, x, k) _ 1

:2 (Qe( f :)+Q0( f :))+Q:
1( f :)& dx dk dt

&B( f :, %) (2.26)

where the boundary term is (thanks to (2.7) together with (2.23))

B( f :, %)=|
T

0
|

�0
|

k # B+(x)
|

k # B&(x)
|{=(k$) } &(x)| f :

+(x, k, t) R(k � k$)

_$(=(k)&=(k$))[%(x, k, t)&%(x, k$, t)] dk dk$ d_(x) dt (2.27)
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The aim of this paper is to prove the following result:

Theorem 1. Let f : be a weak solution to the rescaled problem
(2.5)�(2.7) under Assumptions 1 to 7 in the sense of Definition 1. Assume
that there exists ;>0 such that for almost every (:, t, x, k) # ]0, 1]_
[0, T ]_0_B,

;� f :(t, x, k)�1&; (2.28)

Then, up to extraction of a subsequence, f :(t, x, k) converges in
L2([0, T ]_0_B) strong when : tends to 0 to a centered Fermi�Dirac
equilibrium F 0(t, x, k). Its moments are

\0(t, x)=|
B

F 0(t, x, k) dk, W 0(t, x)=|
B

F 0(t, x, k) =(k) dk (2.29)

They solve in the the weak sense the following Energy Transport model,

�\0

�t
+{x } J0=0 (2.30)

�W 0

�t
+{x } J 0

W&{xV } J0=|
B

Q0
1(F 0) =(k) dk (2.31)

with the homogeneous boundary conditions

J0 } &(x)=J 0
W } &(x)=0 \x # �0 (2.32)

The current density and the energy current density are given by the
formulae

J0=|
B

r0 {k =(k) dk (2.33)

J 0
W=|

B
r0=(k) {k=(k) dk (2.34)

where r0 # L2([0, T ]_0_B) satisfies the following equation:

({k=(k) } {x+{xV } {k) F 0=(D1Qe(F 0)+Q0)(r0) (2.35)

The initial condition for \0 and W 0 are the limit as : tends to zero of
� f :

in dk and � f :
in = dk.
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Remark 2.1. The limit equations listed in the above theorem are
identical to the Energy Transport model derived in ref. 4. The formulation
of Theorem 1 is more tractable for the present study. In order to introduce
the diffusion coefficients of ref. 4, we first notice that in the above equations
we can replace r0 by

f1(t, x, k)=r0(t, x, k)+a(t, x)+b(t, x) =(k)

since the last two terms give a zero contribution when they are multiplied
by = {= or {= and integrated over the whole Brillouin zone B. Now we can
choose a(t, x) and b(t, x) in such a way that the integrals of f1 and f1 = over
the Brillouin zone vanish. Then, we recover the situation of ref. 4 since f1

satisfies

({k=(k) } {x+{xV } {k) F 0=(D1Qe(F 0)+Q0)( f1)

Indeed, writing

F 0=
1

1+exp((=&+)�T )

leads to

f1(x, k, t)=_{x }
+
T

&
{x V

T & } 91+{x \ 1
T + } 92

where 91 and 92 are the unique solutions of

(D1Qe(F 0)+Q0)(91)={k=F 0(1&F 0)

(D1Qe(F 0)+Q0)(92)== {k=F 0(1&F 0)

such that

|
B

9i dk=|
B

=(k) 9i (k) dk=0 i=1, 2

After some computations we end up with the following formulae

J0=D11 _{x }
+
T

&
{xV

T &+D12

{xT
T 2

J 0
W=D21 _{x }

+
T

&
{xV

T &+D22

{xT
T 2
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where the matrices Dij are given by

D1j=|
B

{=(k)�9 j (k) dk, D2j=|
B

=(k) {=(k)�9j (k) dk

Remark 2.2. We do not prove here rigorously the existence of the
weak solutions f : of the Boltzmann equation. We explain however briefly
how this can be done.

Notice first that the estimate 0� f :�1 remains valid for all times if
it is satisfied at time t=0 (maximum principle(17, 21)). It is then possible to
prove that the map

f � Q:( f )=
Qe( f )+Q0( f )

:2 +Q:
1( f )

is continuous from the set [0� f �1] endowed with the L2(B) norm, on
L2(B).

A fixed point argument then shows the existence for our weak problem.
For the treatment of the boundary term, we refer to refs. 22 and 7.

Finally, the bound 0� f :�1 implies that f : # C0(R+, L p(0_B)) for
all p<+�.

The assumption ;� f �1&; is very strong and difficult to prove,
especially when one is looking for global (in time) solutions. Indeed, it
should not be difficult to prove by continuity arguments that if the initial
data satisfy this bound (and are sufficiently regular), then the solution of
the Boltzmann equation satisfies the same bound with ; replaced by ;�2 in
a time interval near zero. The problem is that the measure of this interval
might tend to zero as : goes to zero.

On the other hand, Degond, Ge� nieys and Ju� ngel have shown the exist-
ence of solutions of the Energy Transport model(9�12) under the hypothesis
that the diffusion matrices do not degenerate. This hypothesis is not
fulfilled for example if the temperature approaches zero.

Note that under this non-degeneracy assumption, one could hope to
prove the assumption ;� f :�1&; on a (small) time interval independent
of :.

The proof of Theorem 1 will be done in several steps. In Section 3, we
prove that the distance in L2 of f : towards the set of centered Fermi�Dirac
distribution functions tends to zero. The main tool here is an entropy dis-
sipation estimate, in the spirit of the works of refs. 15 and 28. Then, averag-
ing lemmas are used in Section 4 in order to prove the strong convergence
of the moments of f :. The strong convergence of f : itself towards a
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centered Fermi�Dirac function is then obtained as a corollary. Finally, the
passage to the limit leading to Eqs. (2.30)�(2.35) is performed in Section 5,
following the moment approach of the previous works.(2, 21)

Remark. In the sequel, the following properties of symmetry
deduced from the co-area formula (see ref. 18) will be used systematically:

(i) For any measurable f : B2 � R such that the integrals below
converge,

|
k # B

|
k$ # =&1(=(k))

f (k, k$) dN=(k)(k$) dk

=|
k # B

|
k$ # =&1(=(k))

f (k$, k) dN=(k)(k$) dk (2.36)

(ii) For any measurable f : B2 � R such that the integrals below
converge,

|
B2

dk dk1 :
g # Pk, k1

|
k$ # =~ &1(k, k1 , g)(0)

dN� k, k1 , g(k$) f (k, k$, k1 , k+k1+ g&k$)

=|
B2

dk dk1 :
g # Pk, k1

|
k$ # =~ &1(k, k1 , g)(0)

dN� k, k1 , g(k$) f (k$, k, k+k1+ g&k$, k1)

=|
B2

dk dk1 :
g # Pk, k1

|
k$ # =~ &1(k, k1 , g)(0)

dN� k, k1 , g(k$) f (k1 , k+k1+ g&k$, k, k$)

(2.37)

(iii) For any k, k$, k1 , k$1 # B such that =(k)+=(k1)==(k$)+=(k$1) and
k+k1&k$&k$1 # L*, one has

N� (k, k1)=N� (k$, k$1) (2.38)

3. ENTROPY DISSIPATION RATE AND DEPARTURE FROM
THE EQUILIBRIUM

Let us denote by F and Fc the respective sets of Fermi�Dirac and
centered Fermi�Dirac functions:

F={ exp(a+b } k+c=(k))
1+exp(a+b } k+c=(k))

, a, c # R, b # R3= (3.1)

Fc={ exp(a+c=(k))
1+exp(a+c=(k))

, a, c # R= (3.2)
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We also introduce the entropy dissipations relative to the collision
operators Q0 and Qe

EQe
( f )=|

B
Qe( f ) H( f ) dk, EQ0

( f )=|
B

Q0( f ) H( f ) dk (3.3)

and the global entropy dissipation

Eg( f )=EQe
( f )+EQ0

( f ) (3.4)

Here, H is the function defined by

H( y)=ln \ y
1& y+ , for 0< y<1 (3.5)

The main result of this section is the following estimate:

Proposition 3.1. For any ;>0, there exists a constant C;>0
such that for all measurable functions f : B � R satisfying ;� f �1&; a.e.,

&Eg( f )�C; inf
F # Fc

& f&F&2
L2(B) (3.6)

The proof is done in the spirit of ref. 15 and is decomposed into
several lemmas.

Lemma 3.2. For any ;>0, there exists a constant C1, ;>0 such
that for all measurable functions f : B � R satisfying ;� f �1&; a.e.,

&EQ0
( f )�C1, ; inf

U # L�(R) |B
|H( f )(k)&U(=(k))|2 dk (3.7)

Proof of Lemma 3.2. From now on, we shall use the notation
===(k), =$==(k$). Thanks to the properties of symmetry of 80 (see
Assumption 2), we can write

&EQ0
( f )= 1

2 |
B2

80(k, k$) $(=$&=)( f& f $)(H( f )&H( f $)) dk dk$

= 1
2 |

B2
80(k, k$) $(=$&=) f $(1& f ) *(H( f )&H( f $)) dk dk$ (3.8)
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where

*(x)=x(ex&1) (3.9)

Recalling that ;� f �1&;, there exists a constant K;>0 such that for all
(k, k$) # B2,

*(H( f )&H( f $))�K;(H( f )&H( f $))2 (3.10)

Hence, using the Co-area formula, we obtain

&EQ0
( f )� 1

2;(1&;) K; |
B2

80(k, k$) $(=$&=)(H( f )&H( f $))2 dk dk$

� 1
2 ;(1&;) K; |

B
|

k$ # =&1(=(k))
80(k, k$)(H( f )&H( f $))2 dN=(k)(k$)

(3.11)

Under Assumption 2 and Jensen's inequality, we get

&EQ0
( f )�

1
2

;(1&;) K;c0 |
B } |k$ # =&1(=(k))

(H( f )&H( f $))
dN=(k)(k$)
N(=(k)) }

2

dk

�C1, ; |
B }H( f )&|

k$ # =&1(=(k))
H( f $)

dN=(k)(k$)
N(=(k)) }

2

dk

�C1, ; inf
U # L�(R) |B

|H( f (k))&U(=(k))| 2 dk (3.12)

Lemma 3.3. For any ;>0, there exists a constant C2, ;>0 such
that for all measurable function f : B � R satisfying ;� f �1&; a.e.,

&EQe
( f )�C2, ; inf

T # L�(B_R)

_|
B2

|H( f )+H( f1)&T (k+k1 , =(k)+=(k1))|2 dk dk1 (3.13)

Proof of Lemma 3.3. Thanks to the symmetry properties of 8e (see
Assumption 2), we can write (using the notation d 4k=dk dk1 dk$ dk$1):
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&EQe
( f )= 1

4 |
B4

8e $= $p( ff1(1& f $)(1& f $1)& f $f $1(1& f )(1& f1))

_(H( f )+H( f1)&H( f $)&H( f $1)) d 4k

= 1
4 |

B4
8e $= $p f $f $1(1& f )(1& f1)

_*(H( f )+H( f1)&H( f $)&H( f $1)) d 4k

�C; |
B4

8e $= $p(H( f )+H( f1)&H( f $)&H( f $1))2 d 4k

�C; |
B2

dk dk1 :
g # Pk, k1

|
=~ (k, k1 , g)&1 (0)

dN� k, k1 , g(k$)

_8e(k, k$, k1 , k+k1+ g&k$)

_(H( f )+H( f1)&H( f $)&H( f (k+k1+ g&k$)))2 (3.14)

The right hand side of the above identity is a sum of nonnegative terms.
Therefore, using only one term (g=0), Assumption 3 and Jensen's
inequality yields

&EQe
( f )�C2, ; |

B2 } |=~ (k, k1 , 0)&1 (0)
(H( f )+H( f1)

&H( f $)&H( f (k+k1&k$)))
dN� k, k1 , 0(k$)

N� (k, k1 , 0) }
2

dk dk1

�C2, ; |
B2 }H( f )+H( f1)&|

=~ (k, k1 , 0)&1 (0)
H( f $)

+H( f (k+k1&k$))
dN� k, k1 , 0(k$)

N� (k, k1 , 0) }
2

dk dk1

�C2, ; inf
T # L�(B_R) |B2 }H( f )+H( f1)

&T (k+k1 , =(k)+=(k1)) }
2

dk dk1 (3.15)

Lemma 3.4. There exists a constant C3>0 such that for all
measurable function f : B � ]0, 1[ satisfying

H( f ) # L2(B) (3.16)
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the following estimate holds:

inf
T # L�(B_R) |B2

|H( f )+H( f1)&T (k+k1 , =(k)+=(k1))|2 dk dk1 (3.17)

�C3 inf
m # M |

B
|H( f )&m|2 dk (3.18)

where M is the set

M=[a+b } k+c=(k), a, c # R, b # R3] (3.19)

Proof of Lemma 3.4. Let B be the set of functions of L2(B2)
depending only on k+k1 and =(k)+=(k1) and introduce the following
linear operator:

L: L2(B)�M � L2(B2)�B
(3.20)

t(k) [ Lt(k, k1)=t(k)+t(k1)

Inequality (3.18) is satisfied if and only if the map L is open. Consequently,
we shall prove that L is continuous, one to one and has a closed range and
then apply the open mapping theorem.

(I) L is continuous. Since m(k)+m(k1) is in B whenever m is in M,
and since B is bounded, there exists a positive constant C such that

inf
T # B

|
B2

|t(k)+t(k1)&T (k, k1)|2 dk dk1

� inf
m # M |

B2
|t(k)&m(k)+t(k1)&m(k1)| 2 dk dk1

�C inf
m # M |

B
|t(k)&m(k)|2 dk (3.21)

(II) The range of L is closed. Let tn be a sequence in L2(B)�M and
u in L2(B2)�B such that Ltn tends to u in L2(B2)�B. Let us prove that u
is in the range of L. First, there exists a sequence sn in L2(B), a sequence
Tn(k+k1 , =(k)+=(k1)) in L2(B2) (as a function of k and k1) and g in
L2(B2) such that tn is the natural projection of sn on L2(B)�M, u is the
natural projection of g on L2(B2)�B and

sn(k)+sn(k1)+Tn(k+k1 , =(k)+=(k1)) � g(k, k1) (3.22)
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in L2(B2). Writing k=(k1, k2, k3) and k1=(k1
1 , k2

1 , k3
1), we introduce the

differential operators, for (i, j) # [1, 2, 3]2,

{� ij=\\ �=
�k i+ (k)&\ �=

�ki+ (k1)+\ �
�k j &

�
�k j

1+
&\\ �=

�k j+ (k)&\ �=
�k j+ (k1)+\ �

�ki &
�

�k i
1+ (3.23)

which enjoy the following property:
For (i, j) # [1, 2, 3]2,

{� ij (Tn(k+k1 , =(k)+=(k1)))=0 (3.24)

Therefore, for (i, j) # [1, 2, 3]2,

{� ij (sn(k)+sn(k1)) � {� ijg(k, k1) in H &1(B2) (3.25)

So far the proof is a rewriting of the previous proof (15) for the Boltzmann
equation. The only difference is that the energy band is not parabolic. In
ref. 15, the proof goes on by applying a certain differential operator Rio
(3.25) and for which many terms (involving the third derivative of the band
diagram) vanish. This cannot be done in our case because the band
diagram is not parabolic and consequently its third derivative does not
vanish.

We propose an alternative proof relying on the use of test functions.
According to Assumption 1, for all (i, j) # [1, 2, 3]2 such that i{ j there
exists a test function ,ij # H 1

0(B) such that

(1, ,ij (k1))=0 (3.26)

�\ �=
�ki+ (k1), ,ij (k1)�=1 (3.27)

�\ �=
�k j + (k1), ,ij (k1)�=0 (3.28)

where ( , ) is the H &1, H 1
0 duality product (cf. for example ref. 5, p. 41,

Lemma 3.2). Taking the duality product of (3.25) with ,ij (k1) (for i{ j),
we obtain the convergence in H&1(B) of

A ij
n(k)=

�sn

�k j (k)+a ij
n

�=
�k i (k)&b ij

n

�=
�k j (k)&c ij

n (3.29)
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where

aij
n=�\�sn

�k j + (k1), ,ij (k1)�, b ij
n=�\�sn

�ki+ (k1), ,ij (k1)� (3.30)

and

c ij
n=�\ �=

�ki + (k1) \�sn

�k j+ (k1)&\ �=
�k j + (k1) \�sn

�ki + (k1), ,ij (k1)� (3.31)

Replacing in (3.25) (�Sn ��kj )(k) by the value deduced from (3.29), we get
the convergence in H &1(B_B) of

(b ij
n&b ji

n ) { �=
�ki (k)

�=
�k j (k)&

�=
�ki (k1)

�=
�k j (k)

&
�=
�ki (k)

�=
�k j (k1)+

�=
�ki (k1)

�=
�k j (k1)=

+a ij
n {&\ �=

�k i+
2

(k)+2
�=
�k i (k)

�=
�k i (k1)&\ �=

�ki +
2

(k1)=
+a ji

n {\ �=
�k j+

2

(k)&2
�=

�k j (k)
�=

�k j (k1)+\ �=
�k j+

2

(k1)= (3.32)

Then, testing this convergence against the functions ,ab(k) ,cd (k1), with
ab, cd=ij or ji, we get the convergence of (b ij

n&b ji
n ), a ij

n and a ji
n . Therefore,

bij
n=bn+b� ij

n where b� ij
n is bounded. Consequently, after the extraction of a

subsequence, (3.29) can be rewritten

A� ij
n(k)=

�sn

�k j (k)&bn
�=

�k j (k)&cn (3.33)

where A� ij
n(k) converges in H&1(B). Hence, there exists a sequence of real

numbers dn such that

sn(k)&bn=(k)&cn } k+dn (3.34)

converges in L2(B) (where cn=((cn)1 , (cn)2 , (cn)3)). Therefore, the range of
L is closed.
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(III) L is one to one. The previous arguments are still valid here.
Let s # L2(B), and assume that there exists a function T (in L2(B2) as func-
tion of k, k1) such that

s(k)+s(k1)=T (k+k1 , =(k)+=(k1)) (3.35)

Then, using again for (i, j) # [1, 2, 3]2 the operators {� ij defined in Eq. (3.23),
it can be proved that there exists a, d # R and c # R3 such that

s(k)=&d+c } k+b=(k) # M (3.36)

The proof is a rewriting the proof of closedness of L in which the subscript
n is removed and the expressions ``bounded'' or ``converges in H&1''
replaced by ``equal to zero.''

We now come to the

Proof of Proposition 3.1. We denote by A the space of functions of
L2(B) which depend only on =(k). Note that A is closed in L2(B). Accord-
ing to Lemmas 3.2 to 3.4, the following estimate holds for any f such that
;< f (k)<1&; a.e.:

&Eg( f )�C3 C2, ; d 2(H( f ), M )+C1, ; d 2(H( f ), A) (3.37)

where d denotes the distance associated to L2(B).
Note now that since M is finite-dimensional and since A is closed

(in L2(B)), A+M is also closed (in L2(B)). Then, according to the open
mapping theorem (see ref. 5 for example), we get a constant C;>0 such
that for any f verifying the estimate ;< f (k)<1&; a.e.:

&Eg( f )�C; d 2(H( f ), M & A) (3.38)

Since M & A is the space of functions spanned by 1 and =, then,
according to the estimate

\x, y # R, } exp x
1+exp x

&
exp y

1+exp y }�|x& y| (3.39)

we get

&Eg( f )�C; inf
a, c # R

|
B

|H( f )&a&c=(k)| 2 dk

�C; inf
F # Fc

|
B

| f&F |2 dk (3.40)
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We now prove a corollary of Proposition 3.1 which concerns the scal-
ing described in the introduction. We can prove that the scaled quantity f :

is at a distance of order : of the space of centered Fermi�Dirac functions:

Corollary 3.5. Suppose that f : is a solution to the resealed
problem (2.5)�(2.7) under Assumptions 1 to 7. Suppose moreover that it
satisfies the bound (2.28). Then there exists a family of centered Fermi�
Dirac functions (F :): # ]0, 1] and a constant CT>0 such that

f :=F :+:r: (3.41)

with

&r:&2
L2([0, T ]_0_B)�CT (3.42)

Proof of Corollary 3.5. Multiplying Eq. (2.5) by :2H( f :) and
integrating with respect to (t, x, k) on [0, T ]_0_B, we get:

:2 \|0
S :(T, x) dx&| 0 S:(0, x) dx++: |

T

0
|

�0
G:(t, x) } &(x) d*(x) dt

&|
T

0
|

0
Eg( f :) dx dt&:2 |

T

0
|

0
|

B
Q:

1( f :) H( f :) dk dx dt=0 (3.43)

In Eq. (3.43) * denotes the superficial measure on �0, S: is the entropy
defined by

S:(t, x)=|
B

%( f :(t, x, k)) dk (3.44)

and G: is the entropy flux defined by

G:(t, x)=|
B

{k=(k) %( f :(t, x, k)) dk (3.45)

In Eqs. (3.44) and (3.45), % denotes the strictly convex function defined on
[0, 1] by

%(x)=x log x+(1&x) log(1&x) (3.46)

The proof of (3.43) can be made more rigorous by first noticing that,
since ;� f �1&;, the function %( f ) is Lipschitz continuous with respect
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to f. Therefore, we can choose it to renormalize the Boltzmann equation(16)

and get

�%( f :)
�t

+
1
:

({k =(k) } {x+{xV } {k) %( f :)

=
H( f :)

:2 (Qe( f :)+Q0( f :))+H( f :) Q:
1( f :)

and we obtain (3.43) thanks to an integration over all variables (the con-
tinuity with respect to time is important).

Inserting Eq. (2.23) into Eq. (2.24) and using the evenness of =
(Assumption 1), we get:

1=|
B+(x)

R(k$ � k) $(=(k)&=(k$)) dk$ (3.47)

Equation (3.47) means that the constant function equal to 1 satisfies the
boundary condition (2.7). Hence, Jensen's inequality yields, \t # R+ ,
\(x, k) # �0_B such that k # B&(x),

%( f :
&(t, x, k))�|

B+(x)
R(k$ � k) $(=(k)&=(k$)) %( f :

+(t, x, k$)) dk$ (3.48)

Multiplying by |{k =(k) } &(x)|, integrating with respect to k # B&(x) and
using equation (2.23) gives:

|
B&(x)

|{k=(k) } &(x)| %( f :(t, x, k)) dk�|
B+(x)

|{k =(k) } &(x)| %( f :(t, x, k)) dk
(3.49)

This implies that \(t, x) # R+_�0,

G:(t, x) } &(x)�0 (3.50)

Now, according to Proposition 3.1, there exists a constant C;>0 and
a Fermi�Dirac function F :(t, x, k) such that:

&Eg( f :)�C;(& f :&F :&L2(B)&:2) (3.51)
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Since x � x log x+(1&x) log(1&x) is a bounded function on [0, 1], we
deduce from (3.43) and (3.51) that

& f :&F :&2
L2([0, T ]_0_B)�C:2+:2 |

T

0
|

0
|

B
Q:

1( f :) H( f :) dk dx dt (3.52)

Corollary 2.5 is then a straightforward consequence of Assumption 4.

4. MEAN COMPACTNESS PROPERTY

This section is aimed at proving the following result:

Proposition 4.1. Let f : be a solution to the resealed problem
(2.5)�(2.7) under Assumptions 1 to 7 satisfying the bound (2.28). Then
f : converges up to a subsequence when : tends to 0 towards a centered
Fermi�Dirac function F 0 in L p([0, T ]_0_B) (strong) for 1� p<+�.

Moreover, the concentration \:(t, x)=�B f :(t, x, k) dk and the energy
W :(t, x)=�B f :(t, x, k) =(k) dk converge (also up to extraction) strongly in
L p([0, T ]_0) for 1� p<+�, when : tends to 0, respectively to \0(t, x)
and W 0(t, x), which are the concentration and energy relative to F 0.

In order to prove Proposition 4.1, we use an averaging lemma stating
that \: and W : are strongly compact locally in L2([0, T ]_0). Then one
has to prove that the limits \0 and W 0 of these quantities are indeed the
concentration and energies relative to a Fermi�Dirac function F 0. Once
this result is obtained, the convergence of f : towards F 0 is a simple conse-
quence of Corollary 3.5. The outline of the proof follows closely the pre-
vious work by Golse and Poupaud.(21) Many details are however quite
different.

Lemma 4.2. Let f� :, H� : be uniformly bounded in L2(R_R3_B)
and g~ : be uniformly bounded in (L2(R_R3_B))3. Suppose moreover that

:
�
�t

f� :+v(k) } {x f� :={k } g~ :+H� : (4.1)

where k � v(k) is a function of (W 1, �(B))3) satisfying the following
property:

_C, `>0, \| # S 3, #>0, }{k # B, }\v(k)
1 + } | }�#=}�C#` (4.2)
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Then, for any , # W 1, �(B), the averages I� :
,(t, x)=�B f� :(t, x, k) ,(k) dk are

uniformly bounded in L2(Rt ; H `�4(R3
x)).

For the proof of this lemma, we refer to ref. 21 where only the case
,#1 is treated. The extension to any , # W 1, �(B) is straightforward.

Lemma 4.3. Let f : be a solution to the resealed problem (2.5)�(2.7)
under Assumptions 1 to 7 satisfying the bound (2.28). Then the concen-
tration \:(t, x) and the energy W :(t, x) are uniformly bounded in
L2

loc(]0, T[; H !�4
loc(0)) (! is defined in Assumption 1).

Proof of Lemma 4.3. Plugging decomposition (3.41) of Corollary 3.5
in Eq. (2.5) and multiplying by :, we get:

:
�f :

�t
+({k =(k) } {x+{x V } {k) f :

=(D1Qe(F :)+Q0)(r:)+:(D2Qe(F :)(r:, r:)+Q:
1( f :))

+:2D3Qe(F :)(r:, r:, r:) (4.3)

where DiQe(F :) for i=1,..., 4 denote respectively the i th derivative of Qe

with respect to F :. (Note that since Qe is cubic, its fourth derivative
satisfies D4Qe(F :)=0). Let us now define on R_R3_B the function
f� :='f :, where '(t, x) # D(R_R3) has its support in ]0, T[_0 and will
be chosen later. The function f� : defined on R_R3, is a solution of the
following equation:

:
�f� :

�t
+{k =(k) } {x f� :={k } g~ :+H� : (4.4)

where

g~ :=' {xVf :, H� := f : �'
�t

+ f : {k=(k) } {x'+'h: (4.5)

and h: denotes the right-hand side of Eq. (4.3).
Note first that since 0� f :�1, and thanks to Assumption 6, the

sequences f� : and | g~ :| are uniformly bounded in L2(R_R3_B). Moreover
Assumption 1 also implies that {k = satisfies the requirements of Lemma 4.2
on v with `=!.

It remains to prove that H� : is uniformly bounded in L2(R_R3_B).
It is clearly enough to prove that h: is uniformly bounded in L2([0, T ]_
0_B). We shall therefore prove that all the terms appearing in the right-
hand side of Eq (4.3) are uniformly bounded in L2.
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(I) The term Q0(r:). Using Assumption 3 and Cauchy�Schwarz
inequality, we can prove that Q0 is bounded in L2([0, T ]_0_B).
Namely,

&Q0( f )&2
L2([0, T ]_0_B)

�C 2
0 |

T

0
|

0
|

B
|

=&1(=(k))
| f $& f |2 dN=(k)(k$)

N(=(k))
dk dx dt

�2C 2
0 |

T

0
|

0
|

B
|

k$ # =&1(=(k))
( | f $|2+| f | 2)

dN=(k)(k$)
N(=(k))

dk dx dt

=4C 2
0 |

T

0
|

0
|

B
|

k$ # =&1(=(k))
| f |2 dN=(k)(k$)

N(=(k))
dk dx dt

=4C 2
0 & f &2

L2([0, T ]_0_B) (4.6)

Then, Corollary 3.5 implies that Q0(r:) is uniformly bounded in L2([0, T ]
_0_B).

(II) The term D1Qe(F :)(r:). Note first that this term can be written
under the form

D1Qe(F :)(r:)=|
B3

8e $= $p(r$:P:(k$1 , k, k1)+r$:
1 P:(k$, k, k1)

&r:P:(k1 , k$, k$1)&r:
1P:(k, k$, k$1)) dk1 dk$ dk$1 (4.7)

where

P:(k1 , k$, k$1)=F :
1(1&F $:)(1&F $:

1 )+F $:F $:
1 (1&F :

1) (4.8)

The function P: is always nonnegative and bounded by 2.
We first consider the term involving r:. According to Assumption 3

and using Cauchy�Schwarz inequality, we get

|
T

0
|

0
|

B }|B3
8e $= $p r:P:(k1 , k$, k$1) dk1 dk$ dk$1| 2 dk dx dt

�C 2
e |

T

0
|

0
|

B
|r:|2 |

B
:

g # Pk, k1

|
=~ &1(k, k1 , g)(0)

|P:(k1 , k$, k+k1+ g&k$)| 2

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt

�4C 2
e |B| &r:&2

L2([0, T ]_0_B) (4.9)
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According to formula (2.37), the term involving r:
1 can be treated

exactly in the same way. Then, the terms involving r$: and r$:
1 are treated

with the help of formulas (2.37) and (2.38) and give rise to the same
estimate (4.9).

(III) The term D2Qe(F :)(r:, r:). We first write this term under the
form

D2Qe(F :)(r:, r:)=|
B3

8e $= $p(r:r$:(F :
1&F $:

1 )+r:
1r$:

1 (F :&F $:)

+r:r:
1(F $:&(1&F $:

1 ))+r$:r$:
1 ((1&F :)&F :

1)

+r:r$:
1 (F :

1&F $:)+r:
1r$:(F :&F $:

1 )) dk1 dk$ dk$1 (4.10)

Using the estimate |:r:|�2, we can find a constant C1>0 such that:

&:D2Qe(F :)(r:, r:)&2
L2([0, T ]_0_B)

�C1 |
T

0
|

0
|

B2
:

g # Pk, k1

|
k$ # =~ &1(k, k1 , g)(0)

( |r:|2+|r:
1 |2+|r$:|2+|r$:

1 |2)

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt (4.11)

Using the same symmetry properties as for D1Qe , we get the existence of
a constant C2>0 such that:

&:D2Qe(F :)(r:, r:)&2
L2([0, T ]_0_B)�C2 &r:&2

L2([0, T ]_0_B) (4.12)

(IV) The term D3Qe(F :)(r:, r:, r:). Since we have

D3Qe(F :)(r:, r:, r:)

=|
B3

8e $= $p(r:r:
1r$:+r:r:

1r$:
1 &r$:r$:

1 r:&r$:r$:
1 r:

1) dk1 dk$ dk$1 (4.13)

then using once again the estimate |:r:|�2, we can find C3>0 such that

&:2D3Qe(F :)(r:, r:, r:)&2
L2([0, T ]_0_B)

�C3 |
T

0
|

0
|

B2
:

g # Pk, k1

|
k$ # =~ &1(k, k1 , g)(0)

( |r:|2+|r:
1 |2+|r:

1 |2+|r$:
1 |2)

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt
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Therefore, there exists a nonnegative constant C4 such that

&:2D3Qe(F :)(r:, r:, r:)&2
L2([0, T ]_0_B)�C4 &r:&2

L2([0, T ]_0_B) (4.14)

Note finally that because of Assumption 4, there exists a constant
KT>0 such that for : # [0, 1],

&:Q:
1( f :)&2

L2([0, T ]_0_B)�KT (4.15)

Then we can use Lemma 4.2 in order to prove that '\: and 'W : are
uniformly bounded in L2(R; H !�4(R3)). Finally, \: and W : are uniformly
bounded in L2

loc(]0, T[; H !�4
loc(0)).

Lemma 4.4. Assume that X0 , X and X1 are Hilbert spaces which
satisfy X0/X/X1 , with continuous inclusions. Suppose moreover that the
first inclusion is compact. We denote, for any bounded set K/R,

HK (X0 , X1)=[u # L2(R, X0), Dtu # L2(R, X1) and Supp u/K ] (4.16)

where Dtu denotes the derivative of u with respect to t in the sense of
distributions. Then, the injection of HK (X0 , X1) into L2(R, X ) is compact.

For the proof of this lemma, we refer to ref. 27.

Lemma 4.5. Let f : be a solution to the rescaled problem (2.5)�(2.7)
under Assumptions 1 to 7 satisfying the bound (2.28). Then the concentration
\:(t, x) and the energy W :(t, x) belong to a compact set of L2

loc(]0, T[_0).

Proof of Lemma 4.5. The proof is an application of Lemma 4.4.
Multiplying Eq. (2.5) by ( 1

=(k)) and integrating with respect to k, we get:

�
�t \

\:

W :++
1
: |

B
({k= } {x+{xV } {k)(F :+:r:) \ 1

=(k)+ dk

=
1
:2 |

B
(Qe+Q0)( f :) \ 1

=(k)+ dk+|
B

Q:
1( f :) \ 1

=(k)+ dk (4.17)

Since 1 and =(k) are collisional invariants of Qe+Q0 and since F : and = are
even with respect to k, this identity can be rewritten under the following form:

�
�t \

\:

W :++{x } |
B

r: {k=(k) \ 1
=(k)+ dk&{xV } |

B
r: \ 0

{k =(k)+ dk

=|
B

Q:
1( f :) \ 1

=(k)+ dk (4.18)
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Therefore, the quantities \: and W : are uniformly bounded in the space
H1([0, T ]; H &1(0)). Introducing once again the cutoff function ' (as
in Lemma 4.3), and using Lemma 4.4 with u='\, (and then u='W ),
X0=H!�4(R3), X=L2(R3) and X1=H&1(R3), get Lemma 4.5.

Before turning to the proof of Proposition 4.1, we give a last lemma
which specifies the link between the conservative variables (\, W ) and the
entropic variables (a, c) relative to a Fermi�Dirac function F.

Lemma 4.6. Let F be a centered Fermi�Dirac function:

F(k)=
exp(a+=(k) c)

1+exp(a+=(k) c)
(4.19)

and let \=�B F(k) dk, W=�B =(k) F(k) dk denote its conservative variables.
Then the function T defined by

T (a, c)=|
B

log(1+exp(a+=(k) c)) dk (4.20)

belongs to C2(R2), is strictly convex and its derivatives are

�T
�a

=\,
�T
�c

=W (4.21)

Moreover the function E: (a, c) � (\, W ) is a C1-diffeomorphism from
R2 to E(R2).

Proof of Lemma 4.6. It is obvious that T # C2(R2). The computation
of its derivatives is also simple. In order to prove that T is strictly convex,
we compute its Hessian matrix

\ |
B

exp(a+=(k) c)
(1+exp(a+=(k) c))2 dk

|
B

exp(a+=(k) c)
(1+exp(a+=(k) c))2 =(k) dk

|
B

exp(a+=(k) c)
(1+exp(a+=(k) c))2 =(k) dk

|
B

exp(a+=(k) c)
(1+exp(a+=(k) c))2 =2(k) dk+

(4.22)

According to Cauchy�Schwarz inequality and using the linear inde-
pendence of 1 and =, it becomes clear that T is strictly convex. We note that
the Jacobian matrix of E is nothing but the Hessian matrix of T. Then the
properties of E are a straightforward application of the inverse function
theorem.

We now can prove Proposition 4.1.
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Proof of Proposition 4.1. According to Lemma 4.5, the sequences \:

and W : admit a subsequence \:n
1 and W : n

1 converging for a.e. (t, x) #
[0, T ]_0 towards a limit \0 and W 0.

Note also that because of Corollary 3.5, we can find a subsequence :n

of :n
1 such that for a.e. (t, x, k) in [0, T ]_0_B, f :n

(t, x, k)&F : n
(t, x, k)

tends to 0. Then the conservative variables \: n

F and W :n

F , which are related
to the Fermi�Dirac functions F : n

, also converge, for a.e. (t, x) # [0, T ]_0
towards \0 and W 0.

Let us prove that for a.e. (t0 , x0) # [0, T ]_0 the entropic variables
a: n

and c: n
related to the Fermi�Dirac function F : n

are bounded. To
this aim, we introduce for (t0 , x0) # [0, T ]_0 the set Lt0 , x0

=[k # B,
f :n

(t0 , x0 , k)&F :n
(t0 , x0 , k) � 0 and ;� f : n

(t0 , x0 , k)�1&;], and the
set M=[(t0 , x0) # [0, T ]_0, |Lc

t0 , x0
|=0]. Then, M is a set of full

measure of [0, T ]_0.
Assume that a:n

(t0 , x0) is unbounded, then there exists a subsequence
:n

2 such that

lim
n � +�

|a: n
2(t0 , x0)|=+� (4.23)

Then, for all k # Lt0 , x0
such that =(k){0 and

lim
n � +�

c:n
2

a: n
2

(t0 , x0){ &
1

=(k)
(4.24)

(when this limit exists), the sequence

a: n
2(t0 , x0)+=(k) c: n

2(t0 , x0)=a:n
2(t0 , x0) \1+=(k)

c:n
2

a:n
2

(t0 , x0)+ (4.25)

is unbounded, and therefore H(F : n
2(t0 , x0 , k)) and H( f :n

2(t0 , x0 , k)) are
also unbounded. But this is impossible since for a.e. k # B, ;� f :n

(t0 , x0 , k)
�1&;. Hence a: n

(t0 , x0) is bounded. The same argument shows that
c: n

(t0 , x0) is bounded. Consequently, there exists Rt0 , x0
>0 such that

\n # N,

\a: n

c:n+ (t0 , x0) # B� (Rt0 , x0
) (4.26)

It means that

\ \:n

F

W : n

F + (t0 , x0) # E(B� (0, R)) (4.27)
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and therefore,

\ \0

W 0+ (t0 , x0) # E(B� (0, R)) (4.28)

Then, since E&1 is continuous on E(R2) (see Lemma 4.6), we have:

\a: n

c:n+ (t0 , x0) � \a0

c0+ (t0 , x0)=E&1 \\ \0

W 0+ (t0 , x0)+ (4.29)

This in turn implies that for a.e. k # B,

F : n
(t0 , x0 , k)=

exp(a: n
(t0 , x0)+=(k) c: n

(t0 , x0))
1+exp(a: n

(t0 , x0)+=(k) c: n
(t0 , x0))

�

F 0(t0 , x0 , k)=
exp(a0(t0 , x0)+=(k) c0(t0 , x0))

1+exp(a0(t0 , x0)+=(k) c0(t0 , x0))
(4.30)

Then, f : n
also converges a.e. towards the Fermi�Dirac function F 0. The

convergence in L p (strong) for all 1� p<+� of f : n
and its moments is

then a consequence of its uniform boundedness.

5. CONVERGENCE TO THE ENERGY TRANSPORT MODEL

We conclude in this section the proof of Theorem 1.

Proof of Theorem 1. According to Propositions 3.1 and 4.1, the
sequence f : gives rise to a subsequence f :n

converging in L p (for
1� p<+�) towards a centered Fermi�Dirac function F 0. Moreover,
according to Corollary 3.5 one can extract another subsequence (simply
denoted by : in the sequel) such that r: converges weakly in L2 towards
a limit r0. Let us now prove prove that formulae (2.30), (2.31) and (2.35)
hold.

Multiplying Eq. (25) by ( 1
=(k)) and integrating with respect to k, we get

(see the Proof of Lemma 4.5),

�
�t \

\:

W :++{x } |
B

r: {k=(k) \ 1
=(k)+ dk&{xV } |

B
r: \ 0

{k =(k)+ dk

=|
B

Q:
1( f :) \ 1

=(k)+ dk (5.1)
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Passing to the limit in the sense of distributions in Eq. (5.1), we get

�
�t \

\0

W 0++{x } |
B

r0 {k=(k) \ 1
=(k)+ dk&{xV } |

B
r0 \ 0

{k =(k)+ dk

=\ 0
�B Q0

1(F 0) =(k) dk+ (5.2)

which proves (2.30) and (2.31).
Besides, Eq. (2.5) can be put under the form

:
�f :

�t
+({k=(k) } {x+{xV } {k) f :

=(D1Qe(F :)+Q0)(r:)+:D2Qe(F :)(r:, r:)

+:2D3Qe(F :)(r:, r:, r:)+:Q:
1( f :) (5.3)

To pass to the limit : � 0, we first notice that

:
�f :

�t
+({k =(k) } {x+{xV } {k) f : ( ({k=(k) } {x+{xV } {k) F 0 (5.4)

in the sense of distributions. We now pass to the limit in the right hand
side of Eq. (5.3) (also in the sense of distributions). It is clear that Q0(r:)
tends to Q0(r0) because Q0 is a linear bounded operator of L2([0, T ]_
0_B) (see the proof of Lemma 4.3). Besides, D2Qe(F :)(r:, r:) is bounded
in L1([0, T ]_0_B). Indeed, since

D2Qe(F :)(r:, r:)=|
B3

8e $= $p[r:r$:(F :
1&F $:

1 )+r:
1r$:

1 (F :&F $:)

+r:r:
1(F $:&(1&F $:

1 ))+r$:r$:
1 ((1&F :)&F :

1)

+r:r$:
1 (F :

1&F $:)+r:
1 r$:(F :&$:

1 )] dk1 dk$ dk$1 (5.5)

the estimate 0�F :�1 implies the existence of a constant C1>0 such that:

&D2Qe(F :)(r:, r:)&L1([0, T ]_0_B)

�C1 :
g # Pk, k1

|
T

0
|

0
|

B2 |k$ # =~ &1(k, k1 , g)(0)
( |r:|2+|r:

1 | 2+|r$:|2+|r$:
1 |2)

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt (5.6)
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Using the symmetry properties (2.36), (2.37), we get the existence of a
constant C2>0 such that:

&D2Qe(F :)(r:, r:)&2
L2([0, T ]_0_B)�C2 &r:&2

L2([0, T ]_0_B) (5.7)

It is also clear (because |:r:|�2) that the term

D3Qe(F :)(r:, r:, r:)

=|
B3

8e $= $p(r:r:
1 r$:+r:r:

1r$:
1 &r$:r$:

1 r:&r$:r$:
1 r:

1) dk1 dk$ dk$1

satisfies the estimate

&:D3Qe(F :)(r:, r:, r:)&L1([0, T ]_0_B)�C3 &r:&2
L2([0, T ]_0_B) (5.8)

for some constant C3>0.
It remains to prove that D1Qe(F :)(r:) converges weakly in L1([0, T ]

_0_B) towards D1Qe(F 0)(r0). We remark that D1Qe(F 0) is a bounded
linear operator of L1([0, T ]_0_B). Namely, using the notations of the
proof of Lemma 4.3,

&D1Qe(F 0)(r:)&L1([0, T ]_0_B)

=|
T

0
|

0
|

B
dk dx dt } |B

dk1 :
g # Pk, k1

|
=~ &1(k, k1 , g)(0)

N� (k, k1)

_8e[r$:P0(k+k1+ g&k$, k, k1)+r:(k+k1+ g&k$) P0(k$, k, k1)

&r:P0(k1 , k$, k+k1+g&k$)&r:
1 P0(k, k$, k+k1+g&k$)]

dN� k, k1 , g(k$)

N� (k, k1) }
�2Ce |

T

0
|

0
|

B
|

B
:

g # Pk, k1

|
=~ &1(k, k1 , g)(0)

( |r:|+|r:$|+|r:
1 |+|r:$

1 | )

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt

Therefore, we have the following estimate

&D1Qe(F 0)(r:)&L1([0, T ]_0_B)�8Ce |B| &r:&L1([0, T ]_0_B) (5.9)

which implies that D1Qe(F 0)(r:) converges towards D1Qe(F 0)(r0) in
L1([0, T ]_0_B) weak. It remains to prove that

D1Qe(F :)(r:)&D1Qe(F 0)(r:) � 0 (5.10)
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in L1([0, T ]_0_B) (strong). With the notations of Lemma 4.3, we have

&D1Qe(F :)(r:)&D1Qe(F 0)(r:)&L1([0, T ]_0_B)

�|
T

0
|

0
|

B
dk dx dt } |B

:
g # Pk, k1

|
=~ &1(k, k1 , g)(0)

N� 8e

_[r$:(P:(k$1 , k, k1)&P0(k$1 , k, k1))

+r$:
1 (P:(k$, k, k1)&P0(k$, k, k1))&r:(P:(k1 , k$, k$1)&P0(k1 , k$, k$1))

&r:
1(P:(k, k$, k$1)&P0(k, k$, k$1))]

dN� k, k1 , g(k$)

N� (k, k1)
dk1 } (5.11)

Using the boundedness of 8eN� , the right hand side of this inequality can
be estimated by - I - II where

I=|
T

0
|

0
|

B
|

B
:

g # Pk, k1

|
=~ &1(k, k1 , g)(0)

( |r:| 2+|r:$|2+|r:
1 |2+|r:$

1 |2)

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt (5.12)

and

II=|
T

0
|

0
|

B
|

B
:

g # Pk, k1

|
=~ &1(k, k1 , g)(0)

( |P:(k$1 , k, k1)&P0(k$1 , k, k1)| 2

+|P:(k$, k, k1)&P0(k$, k, k1)|2+|P:(k1 , k$, k$1)&P0(k1 , k$, k$1)|2

+|P:(k, k$, k$1)&P0(k, k$, k$1)|2)
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt (5.13)

In view of (2.37), it is easy to show that

I�4 |B| &r:&2
L2([0, T ]_0_B) (5.14)

whereas

II�|
T

0
|

0
|

B
|

B
:

g # Pk, k1

|
=~ &1(k, k1 , g)(0)

|P:(k$, k, k1)&P0(k$, k, k1)|2

_
dN� k, k1 , g(k$)

N� (k, k1)
dk1 dk dx dt (5.15)
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From (4.8), we get

II�|
T

0
|

0
|

B
|

B
:

g # Pk, k1

dk1 dk dx dt

_|
=~ &1(k, k1 , g)(0)

[ |F :
1&F 0

1 |2+|F :
1 |2 |F $:&F $0| 2

+|F $0|2 |F :
1&F 0

1 |+|F :
1 |2 |F $:

1 &F $0
1 |2+|F $0

1 |2 |F :
1&F 0

1 |2

+|F $: |2 |F $:
1 &F $0

1 | 2+|F $0
1 |2 |F $:&F $0| 2]

dN� k, k1 , g(k$)

N� (k, k1)

�7 |B| &F :&F 0&L2([0, T ]_0_B) (5.16)

Therefore, in view of all the above estimates, we can to the limit in (5.3)
and prove (2.35). The only thing left to show is that J0 } & and J 0

W } & vanish
on the boundary �0. This is a direct consequence of mass and energy con-
servation of the reflection operator. Indeed, for a distribution function
satisfying the boundary condition (2.7), we have

|
B

{=(k) } &(x) G(=(k)) f dk=0 \x # �0

Consequently since f :=F :+:r: where F : is a centered Fermi�Dirac dis-
tribution, and therefore even with respect to k, we have for all x # �0,

|
B

r:=(k) {=(k) } &(x) dk=|
B

r: {=(k) } &(x) dk=0

which in the limit : � 0 gives J0 } &=J 0
W } &=0. This proof can be made

more rigorous by taking test functions and passing to the limit in the weak
formulation of the Boltzmann equation (2.26). Indeed, the test functions
%(x, p, t)=�(x, t) and %(x, k, t)==(k) �(x, t) are such that B( f :, %)=0
(see (2.27)). We can then pass to the weak limit in (2.26) and get

|
0

�(x, 0) |
B

fin \ 1
=(k)+ dk dx&|

R + |
0

��
�t \

\0

W 0+ dx dt

&|
R + |

0
{x� } |

B
r0 {k=(k) \ 1

=(k)+ dk dx dt

&|
R + |

0
�(x, t) {xV } |

B
r0 \ 0

{k =(k)+ dk dx dt

=|
R + |

0
�(x, t) \ 0

�B Q0
1(F 0) =(k) dk+ dx dt
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which is exactly the weak formulation of the Energy transport model with
the boundary and initial conditions announced in Theorem 1.
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